
www.manaraa.com

Requirements for a Database Management
System for a GIS
Andrew U. Frank
Department of Surveying Engineering, University of Maine, Orono, ME 04469

ABSTRACT: In geographic information systems (GIS) large amounts of data are stored and must be made available to
multiple users. Database management systems (DBMS) were designed to facilitate storage and retrieval of large data
collections. They include facilities to protect and secure data, enforce consistency of the data stored, and make data
available to multiple users at the same time. These services are necessary for GIS, and GIS should therefore be built
using database management systems. However, geographic information systems demand high performance and pose
some very special requirements for database management. DBMS designed for commercial usage are not well suited
for GIS because they cannot accommodate spatial data and cope with retrieval of map graphics. An overview of the
architecture of a DBMS especially suited for spatial data handling is presented. For each layer, specific techniques, e.g.,
for buffer management, clustering of data, and spatial access, that are useful for GIS DBMS are indicated. Efforts to
implement the PANDA DBMS are described.

INTRODUCTION

G EOGRAPHIC INFORMATION SYSTEMS (GIS) must store large
amounts of data and make them available on demand. Users

have learned from their personal computer experience to de­
mand nearly instantaneous responses even for relatively com­
plex requests. Traditional solutions in which data are stored on
disk or on magnetic tape and must be searched sequentially
cannot respond fast enough to user queries and are no longer
sufficient to accommodate frequent changes in the users needs.

A modern GIS is expected to be able to integrate data for
different topics and from different sources. The integration of
multiple data sets, often visualized as multiple data layers, is
expected to produce a synergistic effect and yield better infor­
mation for decision making. Traditional file oriented storage
cannot easily respond to this requirement either.

Geographic information systems are comprised of a complex
of several parts that interact. In order to build computerized
GIS, we have to deal with organizational, software, and hard­
ware problems.

It must be noted that organizing the cooperation of different
groups to collect data and to share the results is an especially
difficult task, for which few guidelines and rules are available.
Many projects fail not for technical reasons, but for lack of or­
ganizational arrangements or because of a poor understanding
of social or economic implications.

Hardware problems are more easily resolved - the compo­
nents for storage and processing of very large amounts of data
are available from various manufacturers. Prices are increas­
ingly reasonable and the general trend is toward "zero cost
hardware" (Dangermond and Morehouse, 1987). GIS software,
on the other hand, is much more difficult to build than many
had previously thought. The software system to manage GIS
data must contain a module that provides database manage­
ment system functionality. This paper deals primarily with this
software component and the requirements placed on it by GIS
applications.

Database management systems (DBMS) are appropriate tools
for GIS. Fast access to spatial data out of a large data collection
is difficult to achieve. Many current GIS store data as a collection
of map sheets (or similar spatial partitions) which are then han­
dled as units. This requires all users to understand their struc­
ture and hinders access by postal addresses or other logical
concepts, for example. To achieve the desired "seamless" da­
tabase where objects (i.e., map features) are not arbitrarily di­
vided by map boundaries and where users can freely move or

PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING,

Vol. 54, No. 11, November 1988, pp. 1557-1564.

zoom over the map, special methods and optimizations are nec­
essary.

DBMS software provides the services needed to integrate and
protect the data. But, the conventional DBMS does not deliver
the performance and cannot retrieve map data quickly enough
for interactive work. Not all GIS software packages currently on
the market contain a DBMS or include all the services necessary
for data protection.

In this paper, we detail these necessary DBMS services and
show in an architectural overview how they interact. We use
modern software engineering concepts to organize the discus­
sion. Particular attention is given to the integration of database
management systems with other software specifically written
for spatial data processing. Emphasis is placed on data storage
and retrieval functions, including the protection of the data in
a GIS. Equally important problems of adequate modeling of real­
ity and the data model support necessary for GIS are excluded
and treated elsewhere in order to conserve space (Egenhofer
and Frank, 1988a). The discussion of access methods and, es­
pecially, query languages is therefore intentionally limited.

Many of the ideas reported here are based on experience with
the PANDA database management system (Frank, 1982a, 1984b,
1986a; Egenhofer and Frank, 1987a). We identify methods suc­
cessfully implemented, and include a critique of methods which
have not worked as well and will be replaced in the future.

SPATIAL INFORMATION SYSTEMS

The use of computers for "batch" processing, where all the
input data are collected and an output with the result is deliv­
ered later, has been largely replaced by interactive information
systems, where the system maintains a collection of data which
is then interrogated by users as they need the information.

In general terms, an information system contains an image
or model of reality, which we can use to make decisions and
need not re-investigate the facts each time. This is extremely
important in all situations where data collection is expensive,
cumbersome, or slow, and is one of the major forces behind
GIS: substantial savings by sharing the cost of data collection
and at the same time improved usage of the data and higher
quality information output is expected (National Academy of
Science, 1980).

Geographic information systems deal with data related to lo­
cation in real world space - here referred to as spatial data.
Many operations of government at all levels, as well as planning
and research, exploit data which have a spatial component.

0099-1112/88/5411-1557$02.25/0
©1988 American Society for Photogrammetry

and Remote Sensing

www.manaraa.com

1558 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1988

FIG. 1. Database management system.

integration of the database manipulation language with the pro­
gramming language used influences the effort necessary to de­
velop and change appHcation programs. A free-standing query
language is helpful for casual users to retrieve data from the
database to answer ad-hoc questions without any formal pro­
gramming. This will make the database usable for one-of-a-kind
questions, which are often posed in deaHng with abnormal sit­
uations or in planning applications.

A database management system is thus a method of encap­
sulating the valuable data to make it available to a multitude of
users while simultaneously protecting the data (Figure 1).

Early in the history of data processing, programmers became
aware of the similarity in needs of different applications to store
and retrieve data. Instead of rewriting procedures for these
functions for each appHcation, an attempt was made to write a
generally applicable program to provide these services. The idea
of a (generalized) database management system was born (CO­
DASYL, 1962, 1971).

SPATIAL DATABASE MANAGEMENT SYSTEMS

Standard commercial database management systems, as used
for keeping personnel or client data, etc., are designed for dif­
ferent usage patterns than found in engineering and scientific
applications. Commercial users require the telephone number
or the address of a person or transfer some amount of money
from one to another account. In a spatial information system
users ask for a map-like sketch on the screen showing, e.g., a
building with its boundaries, the neighboring buildings, and
possibly the utility lines to which it is connected. The entities
in a spatial information system are often logically connected to
many more other entities than in a commercial system. Addi­
tionally entities are related by spatial relations like "neighbors"
or "near by" which are not found in commercial applications.

The crucial task in a spatial information system is the retrieval
of a set of entities necessary to draw a small map on the screen.
After counting entities in such drawings for different applica­
tions, we estimate that 2000 to 5000 entities (points, lines, sym­
bols, etc.) must be retrieved from the data collections to produce
such a drawing. Screens with substantially less data seem empty
and do not convey enough information about an area, whereas
screens with more data are too crowded and are difficult to
read. In an interactive operation response must be faster than
half a minute, otherwise operators start working on other tasks,
their concentration is lost, and productivity suffers.

Commercially oriented database management systems are not
designed for fast retrieval of so many spatially related entities.
Current GIS software is either based on specific file structures,
at least for the spatial data, and lacks many of the other benefits
of DBMS or it partitions the data in smaller data sets which are
then stored as separate databases. This is acceptable in systems
for maintenance of maps where updated paper maps are pro-

~Application I
I l C I-ol---User 3

I AApplication ~

D b ~wl/;APPI:ation ~vuser1
ata ase B 0..user 2

Management
System(Data (

Data Base

Information System

Such systems are referred to by various other names (e.g., land
information system, AM/FM, multi-purpose cadastre). We will
concentrate on general aspects of systems dealing with spatial
data referred to as "spatial information systems", without con­
sideration of differences between systems designed for specific
tasks.

We will concentrate on systems which store data with an
exact reference to location and which describe geometry using
points and vectors. This is not to exclude systems of other types­
there are obvious advantages in the use of raster operations for
certain tasks, but they seem to have substantially different re­
quirements for data storage and warrant a separate discussion.

A GIS is a model of reality and not just a repository of car­
tographic data necessary to draw maps (Frank, 1984a). Methods
to represent complex aspects of reaHty in a computer system
therefore become important. Only if the structure of reality is
appropriately modeled in the data stored can we expect that
the combination of multiple data sources and the extraction of
complex information will produce results that are meaningful.
In such situations we encounter relations between the data ele­
ments, e.g., a building is at the same time related to a lot on
which it is built, to a street it is on, and to persons who are
living in it. A method to store and retrieve the data, using and
preserving these multiple relations, is necessary.

Access to data should be possible both from a high level lan­
guage and from a user-friendly query language. The level of

DATABASE MANAGEMENT SYSTEMS

Data collected in a database are valuable because much effort
is necessary to collect and enter the data into the system and
to keep the data up-to-date. Data stored must be available for
a long period of time to justify expenses of data entry. New,
unforeseen changes will likely occur in applications during the
lifetime of the data. File oriented programs have a tendency to
require changes in all programs that access a file if a change in
this file becomes necessary. Database management systems
separate the processing of the data from their storage, and con­
fine changes to the directly affected programs.

Making the same data available for many appHcations and
integrating data from different sources is difficult in a file ori­
ented system because it creates more dependencies between the
programs and the file and thus makes adapting programs to
the changing requirements more expensive. Under these cir­
cumstances, the traditional simple file structure designed to fa­
cilitate a special application program is no longer adequate.

A database management system should provide the following
functionality:

• Storage and retrieval of data; selection of data based on a multi­
tude of access keys (e.g., name of a person, street address of a
building);

• Standardized access to data and separation of data storage and
retrieval functions from the programs using the data (this makes
database and application programs independent, so that changes
in one do not necessarily lead to changes in the other);

• Interface between database and application programs based on a
logical description of the data (details of the physical storage struc­
ture should be transparent to the applications);

• Make access functions in applications independent of the physical
storage structure, so adaptations to expanding storage needs do
not influence the application programs;

• Allow for access to the data by several users at the same time;
and

• Provide for the definition of consistency constraints for the data
which will then be automatically enforced. Consistency con­
straints are rules which must hold for all data stored, and are an
excellent technique to reduce the number of errors in a large data
collection.

www.manaraa.com

REQUIREMENTS FOR A DATABASE MANAGEMENT SYSTEM FOR A GIS 1559

duced, but is not useful when end users ask questions like
"how is building 23 Mill Street connected to the water main."
Such users must not be bothered with the limits of map sheets,
as this distracts from their primary task, and they must be able
to select areas by logical criteria as well as by zooming and
roaming graphically in a seamless database.

Database research found that a number of engineering and
scientific applications (e.g., Computer Aided Design, medical
data processing) all need the basic functionality of DBMS as found
in commercial systems, but have some similarity in require­
ments that make standard DBMS unsuitable (Plouffe et aI., 1984).
Research in these so called "non-standard" databases started
in the early '80s (Frank, 1981; Haerder and Reuter, 1982; Schek
and Lum, 1983) and continues to the present (Manola et aI.,
1987). The next sections will give first a framework for such
non-standard DBMS and then mention some specific techniques
which have been found useful.

SPATIAL DBMS

We propose a layered architecture for a spatial DBMS. Its ar­
chitecture is composed of a hierarchy of modules, each provid­
ing certain types of services or functions to the next layer above.
The lowest layer' is directly related to the services provided by
the operating system, whereas the top layer provides services
to the GIS user (Figure 2).

Layer 1 stores data, using the operating system to access the
file system. This layer is mainly concerned with improving the
performance of data access. Services offered are "store" and
"retrieve" operations for data elements (records) using internal
record identifiers.

The next layer provides essentially the same operations, but
makes them secure. Changes in the database are guaranteed
against loss or interference by other users.

The third layer adds different types of access methods, e.g.,
access to data based on a value (e.g., street address) or spatial
location.

The fourth layer offers a logical structuring tool for the data
and manipulations based on this logical schema. These services
are then offered as an extension to a high level programming
language or an independent query language.

REQUIREMENTS FOR THE DATA STORAGE LAYER

The main purpose of layer 1 is to interface with the operating
system and to improve speed of storage and retrieval. Perform­
ance of a database management system is primarily perceived
as response time to queries or generally time to retrieve data
stored in the system. Experience shows that retrieval time of
data is determined by the number of physical disk accesses,

and that processing time of data once transferred to working
memory is of minor influence.

Spatial information systems typically require large databases
stored in a permanent manner on mass storage devices (disk).
Only small parts of these collections are usually accessed for
the execution of a simple operation. Access to data on a disk
takes about 30 milliseconds per access and is nearly indepen­
dent of the amount of data read. Disk technology has improved
considerably over the last decade, resulting in much larger stor­
age capacity and lower prices. Access time has, however, re­
mained nearly constant. Disk access time must be compared
with the time to process data in central memory (less than 0.1
microsecond - thus 300,000 times faster).

A major requirement for this layer results from the maximum
delay we can allow for the drawing of a map on a screen. If
each of 2000 to 5000 data records necessary for "one screen full
of data" were fetched from the disk with an independent access
(taking at least 30 msec), the user would have to wait 1 to 3
minutes for the map to be drawn, completely unacceptable in
an interactive environment. Therefore, layer 1 must reduce the
number of physical accesses necessary to retrieve the records
for the map. Two basic techniques are known: clustering of data
and buffer management. We use both. It must be noted that
operating systems sometimes use similar methods to improve
performance of disk operations and these optimizations tech­
niques can interfere with the methods a database uses. It may
be advantageous, therefore, to use low level disk access oper­
ations and by-pass operating system services for buffering.

CLUSTERING

The primary method to reduce the number of disk accesses
is to form clusters of logically or spatially related objects on disk
pages (Figure 3). A physical access to the disk brings in a larger
chunk of data, usually called a disk page (512 bytes to a few
thousand bytes large). If we can arrange our records on disk
pages in such a way that each page contains several data records
necessary for the map drawing, the number of time-consuming
disk accesses to transfer the data to working memory will be
greatly reduced. In 20 seconds, we might read about 200 pages.
If each contained 25 of these records needed (and possibly some
others), all the necessary data will have been read.

This is feasible in cases where a reasonable prediction of what
data will be used together is possible. These data are then stored
together and form a physical cluster on the disk (Salton and
Wong, 1978). Fortunately for spatial retrieval for map drawings,
such predictions are easy, based on the neighborhood relation.
We retrieve data for a map situated within a certain area. If we
retrieve a data element of an object, chances are good that data
from other objects in the vicinity are needed next. It would also
be advantageous if data of different types (e.g., houses, roads
and rivers) could be stored on the same "page" and not nec­
essarily require different physical accesses. If such data are elus-

FIG. 2. The layers of a spatial database management system.

'Layer in this context describes a collection of software modules (pro­
grams) and must not be confused with the use of the term to describe
a cartographic layer in an overlay system.

Clustered storage on disk

~ few accesses
........ fast response

(

Regular Distribution
of data on disk

---+ many accesses
---+ slow response

FIG. 3. Spatial clustering.

Data Storage(Disk ()

www.manaraa.com

1560 PHOTOGRAMMETRIC E GINEERING & REMOTE SE SING, 1988

tered together and retrieved with one physical access, we can
achieve the goal of retrieving a map within a short time span,
permitting interactive work.

A database system for spatial data must at least provide for
physical clustering of data (typically a command like STORE EAR
x" where x is an already stored record must be available to the
programmer of low-level data storage routines). This require­
ment excludes many of the simpler relational DBMS, where
physical storage of data is directed by the primary key and
cannot be influenced by the user. It is neither necessary nor
desirable that physical clustering be visible on the level of the
user interface. It should rather be used internally for fast spatial
access and be of no concern to the user.

BUFFERING

Many programs show a locality of access (i.e., the same data
elements are used repeatedly over a short period of time). If
these data elements can be kept in a buffer, the number of
physical accesses to a slower mass storage device can be re­
duced. For each data element, only the first access uses the
slow device, and all following requests are satisfied using the
buffered data. This strategy is generally employed in computers
(e.g., virtual memory, cache). A DBMS usually contains a single
set of buffers for pages brought in from the disk in order to
exploit a physical clustering of data on the storage device.

Programs dealing with spatial data typically show much lo­
cality of access to data but use a large working set (e.g., all the
records for a map drawing). Users tend to work in a geograph­
ical area for several interactions before they request another
base map. Very often they ask for an overview map first, then
zoom in on a detail of interest and start to work on this. In our
experimental database management system, PANDA, we in­
cluded a second level of buffers for simple records. We currently
set the size of the buffer to 5000 records, which allows us to
keep a complete map drawing in buffer. Redrawing a map or
zooming in does not require any additional physical accesses
and is consequently very fast.

PROTECTION OF DATA

Large collections of geographic or administrative data are, as
with other data collections, valuable assets and must be pro­
tected. Even if the information is maintained in parallel in other,
traditional forms (registers, maps), the cost of transferring this
information into a machine readable form is considerable. Fur­
thermore, information that may be deduced from the data may
be of enormous economic value for someone who knows how
to take advantage of it (information is power). Even if this as­
pect is less pronounced for a spatial database than for databases
in commercial usage, data collected must be kept from unau­
thorized use. For example, most national statistical bureaus col­
lect data which must only be disclosed as statistical aggregates
that do not disclose values for individuals.

It is customary to differentiate the following four classes of
threats:

• loss due to errors in operating or malfunctioning of hardware or
software, or erroneous manipulation by authorized users;

• destruction or access by unauthorized users;

• introduction of false data by authorized personnel using correct
procedures; and

• corruption of data by multiple users at the same time (concurrent
updates).

Digital data are quite complex to protect and organizations typ­
ically have little experience in protecting data bases. Human
beings cannot sense the presence (or absence) of data directly.
One needs computer equipment and programs to assess a data
collection. Also, data quality cannot easily be evaluated, as the

presence of data does not guarantee that the data are useful,
correct, updated, or complete.

Although layer 2 does not add substantial new functionality,
it will increase security of operations. Most of the functions in
this layer will, however, reduce performance. That is the price
we pay for the security gained.

In order to determine appropriate security measures, we must
assess possible damages resulting from loss of data (e.g., cost
of reentering data, cost associated with interruption of opera­
tions) and balance them against the cost operations to prevent
such losses. Most commercial operations place great importance
on uninterrupted operations and confidentiality. In conse­
quence, very involved but secure schemes have been devised.
In GIS applications it may be acceptable that data are not avail­
able for a few hours or even a day if such interruptions occur
very seldom. Lower levels of security may thus be acceptable.

PROTECTION AGAINST LOSS

Protection of data against loss by malfunctioning hardware
or software is absolutely necessary. In all situations in which
more than just infrequent changes are made, the protection
mechanism should include the updates of the database. A change
the user has affected and the confirmation received from the
database must not be lost. It is customary to distinguish two
types of problems:

• Interruption of the database management program due to oper­
ating errors, problems in the operating system, or failure of the
hardware. Such interruptions occur in most installations quite fre­
quently (one per day to one per week). During such events, all
contents of main memory are lost, and it is therefore necessary to
write changed data to permanent mass storage before confirma­
tion of an update.

• Loss of the storage media, again due to errors in operations or
hardware defects (the so-called "head crashes"). Such problems
are usually rare (once a year) and slower recovery procedures are
acceptable.

Services offered in commercial database management systems
are generally sufficient. However, many of the systems for use
on micro- and personal computers, as well as the systems spe­
cialized in geometric and geogrpahic data, very often do not
adequately protect the data.

SECURE DATA FROM UNAUTHORIZED USAGE

Some databases will contain confidential information. It is
necessary to protect it against unauthorized use. Access must
not be given to people prohibited from using its contents. Mea­
sures to exclude certain otherwise authorized users from access
to certain classes of data must be provided. For example, per­
sonnel in telephone companies need not know the amount of
the mortgages on a property. Some users will only be author­
ized to read data, but not to change them. Clear regulation of
responsibility for data quality is required, and only the groups
responsible should be allowed to finalize changes. A special
problem in statistical databases (and many spatial databases will
be used as such) is that of restricting authorized users to gen­
eralized information only and preventing direct access to indi­
vidual data. Most of the known systems have proved insufficient
to protect against a determined attack, and the protection mea­
sures proposed are extremely involved (Denning and Schlorer,
1980).

In general, we may assume that the operating system con­
tains methods to screen out unauthorized users as well as to
identify authorized users. However, only the database man­
agement system can restrict access to certain parts of the da­
tabase accessible for certain users.

TRANSACTION MANAGEMENT

Transaction management deals with safeguards to secure data
against accidental loss by authorized users. We must deal with

www.manaraa.com

REQUIREMENTS FOR A DATABASE MANAGEMENT SYSTEM FOR A GIS 1561

user input errors, but must also consider all sorts of hardware
malfunctioning. We must also contend with power-loss, errors
in programs, and multiple simultaneous users. The goal is to
prevent loss of data by authorized users, and/or the introduc­
tion of new, false data. Control of authorized users is primarily
concerned with changes inserted into the database, assuming
that read-only accesses do not change the database and thus
cannot introduce errors.

It is customary to group together a number of logically con­
nected changes to the database to form a transaction. Trans­
action management in a database management system is
concerned with

• atomicity of the transactions,
• concurrency of transactions by multiple users,
• integrity of the database after the transaction, and
• durability of the transactions,

yielding the mnemonic ACID (Haerder, 1985).

ATOMICITY OF TRANSACTIONS

From the point of view of the database, all the changes included
in a transaction are logically connected (that is the idea expressed
in bundling them together as a transaction) and, thus, either all
of them should be executed or none. A database should never
contain partial results of a transaction, even if a transaction is
stopped by a sudden hardware failure (or loss of power).
Atomicity allows programs to be restarted and continue their
work after a sudden stop, as the database is always in a defined
state (namely, at the end of the last executed transaction) and
the program never needs to deal with the partial execution of
a transaction.

CONCURRENCY

Several users may access and change the same piece of data
at the same time. Such concurrent actions may conflict and must
be coordinated. In a database management system one generally
requires that concurrent users see only the effects of completed
transactions and cannot observe any partial results of transactions
run by other users. Further, the database management system
must check that the actions of one user do not invalidate changes
another user has made. Commercially available systems for spatial
data management typically do not contain automatic prevention
of conflicts between users, but rather rely on organizational
mechanisms to insure that only one user is working on a file at
a time.

INTEGRITY

A collection of data can easily be destroyed by adding "wrong"
data. Users will not accept a database from which they often
get erroneous or contradictory information. Unfortunately, there
are no easy ways to have a program check that entered data (or
changes) are correct (i.e., that the data describe reality correctly).
The best we can achieve is including rules in the DBMS which
test that new (or changed) data do not contradict other facts
already stored in the database. We say that a database is consistent
if it is free of such contradictions.

DURABILITY

A transaction which is once confirmed should never be lost
because of malfunctioning hardware or other problems. A
database management system should include mechanisms for
maintenance of a journal of all changes posted such that an
archival copy, made regularly, can be updated to the newest
version if the current data are lost. This is similar to, but more
elaborate than, the customary "two-generation" method used
to secure files in a batch processing system.

Methods for transaction management are well-known, but
unfortunately reduce the performance. They add considerably

to the processing time of transactions and can decrease
performance during updates by roughly half. This is toe reason
they are often not included in commercially available spatial
information systems. In comparison of systems (in benchmarking
for example), it must always be specified what type of transaction
management is used and what levels of protection of data against
inconsistencies and loss are provided.

In the experimental PA DA database management system, we
have included a large object buffer, which can hold all the data
objects a user accesses during a transaction. With this buffer,
we can prepare all changes to the database in the buffer. Data
files are not affected before the transaction is completed. Then
all the changed objects are written to disk at once. This is a
relatively simple scheme that can be expanded to include
transaction logging, as a journal of all changes can be (must be)
written before any updates of database files are accomplished.

The use of transaction management to achieve several
competing goals restricts the flexibility of what can be defined
as a transaction. If transactions serve as units for durability,
they must be short because it is not acceptable to lose much
work. Similarly, transactions used to control concurrency must
be fast because barring other users from changing data for long
periods of time cannot be tolerated. On the other hand, certain
operations in a GIS are much too complex to be accomplished
in a short transaction. In some applications a user level transaction
may be very complex and take a long time to complete (e.g.,
the subdivision of a lot). It must be possible to record components
and partial results, even if overall consistency can only be checked
at the end. It is proposed to compose such "Iong transactions"
from short (ordinary) transactions and have the database contain
special rules that control completion of the long transaction.
This is an area of current database research and no
implementations are available today.

ACCESS METHODS BASED ON SPATIAL LOCATION

The layers discussed so far provide for storage and retrieval
of data using an internal identifier (database key) which is as­
signed to a data record when it is first stored. The record itself
is considered to be a fixed number of bytes which are stored
and later reproduced. For non-standard applications, it is es­
pecially important that the storage system does not depend on
interpretation of the data stored because this would limit the
flexibility of arranging information in a record and produce un­
desirable dependencies between the different layers of the sys­
tem and the application's definition of the record types. The
database subsystem of a larger application must handle arbi­
trarily structured data records without dependency on their in­
ternal structure. Record data structures constructed from the
basic data types (i.e., integers, reals, and strings) is not even
sufficient for commercial applications, as exemplified by nu­
merous extensions offered (e.g., data types for money, date).

Standard DBMS include methods to access data elements based
on key values or other constructions in the data model:

• Users often need to access data records based on the value of one
or several data fields (key fields). This requires, in the Simplest
case, that the stored values for these fields be unique, so that
given values unequivocally identify the desired record (this will
be a consistency constraint of the database). It is generally nec­
essary to be able to define more than one key for a record, so the
record can be found using either value (e.g., a person's record
must be found by social security number or name).

• The data model permits the grouping of objects to units of a higher
order. Such combinations create access paths, as users can go from
an object to the groups it is contained in or to the objects it consists
of. For example, all the buildings on a street must be accessible
once the street is found.

A great deal of data in a spatial information system is related
to objects in space. Location and extent are known for these

www.manaraa.com

1562 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1988

objects. Many applications need access to data based on location
(Burton, 1978). This is obvious for all retrievals associated with
map production (all objects within the map frame must be re­
trieved and then graphically rendered). Similar accesses are
necessary for internal operations to check incoming geometric
data and for geometric manipulations of stored data. Spatial
access to data is based on a query of the form: Retrieve all < object­
type> within <area> , where < area> is the description of the area
of interest. .

In order to provide a general efficient function, it seems ap­
propriate to reduce < area> to a rectangular box parallel to the
coordinate system (Figure 4). Similarly, for each object the lo­
cation and extension is recorded as a rectangular box (minimal
bounding rectangle) (Figure 5). This seems to be a general and
computationally simple solution.

More specific requests are then treated in two steps. In a first
step, all data within the rectangular envelope of the area are
retrieved (based on a comparison of the query rectangle and
the object box). The more expensive, exact selectio~ proces~ is
performed in a second step only on the data passmg the £lrst
test. For example, to retrieve all buildings within a town, we
retrieve first all the buildings within the minimal bounding rec­
tangle of the town and then, in the second step, check only
these against the exact town boundary.

The access method should be divided into (1) a method of
phYSical clustering to achieve a minimal number of physical
disk accesses and (2) a logical data structure which permits spa­
tial access and guarantees its correctness, preferably even in the
presence of some shortcomings in the physical clustering. The
physical clustering will speed up the retrieval of map output
and it benefits many other forms of geometric data processing,
such as area computation. We can thus exploit the specific geo­
metric locality of access observed in most algorithms of com­
putational geometry (Dutton, 1978).

The traditional approach found in many of the GIS on the
market is to divide the world space into map sheets (sometimes
called "facettes"), and to store the data for these map sheets as

FIG. 4. Query window.

FIG. 5. Object with box (minimal bounding
rectangle).

individual files. The amount of data within such a file is then
small enough to permit the use of linear search methods. This
is, in our opinion, insufficient for the following reasons:

• The granularity of access is fixed and provides rapid access only
if the query area is comparable to the sheet size. For queries about
much larger areas, response is slow because many different files
must be opened and read in.

• Access to more than one sheet requires recombination of objects
at the sheet borders. This is a complicated and time consuming
operation and only possible with an understanding of the internal
structure of the representation of the objects. Thus, the types of
geometric objects treated are defined in the storage layer, and it
is difficult for a user to add new geometric object definitions.

• Most systems do not hide the sheets from the user, nor do they
provide a query language working automatically across sheet
boundaries. It seems acceptable to ask draftsmen to know which
map sheet they update; it is, however, clearly inappropriate to
require this knowledge of a casual user needing a map of water
mains during an emergency.

Only a few logical data structures are known to permit fast
response to this type of spatial access, technically called a two­
dimensional range query. They are all based on self-adjusting
partition of space and clustering data of one partition in a disk
page, so that access to one page brings in many entities useful
for producing the requested map (Nievergelt et aI., 1984; Tam­
minen, 1982; Guttman, 1984; Samet, 1984). The method de­
scribed in Nievergelt et al. (1984) is an adaptation of a more
general hash based structure for storage of multidimensional
objects. It turns out to be very similar to the FIELD TREE method
we have developed in PANDA (Frank, 1981, 1983).

In the FIELD TREE method, clustering is not only guided by
location and extension of objects, but includes also a component
of level of importance of an object. This speeds up responses
to "overview" requests where only "important" objects must
be retrieved for a large area (e.g., all towns in a state) or for
detail maps where all objects for a small area are retreived (e.g,
a building with all public utility connections). Response time
for queries is linearly dependent on the number of objects re­
trieved; thus, a screen full of map data always takes about the
same amount of time. Other influences are the size of the area
of the query and the number of objects stored for this area. The
total number of objects stored in the system has virtually no
influence on response time.

QUERY LANGUAGE

Query languages are very important for the retrieval of data
to satisfy certain immediate needs which were not planned for
and for which no programmed access procedures are available.
Interactive languages for ad hoc queries are usually included in
commercial database management system. It appears today that
the SQL language, originally developed by IBM (Astrahan et aI.,
1976), is becoming the accepted standard, and a respective pro­
posal is currently being dealt with in the American National
Standards Institute. A number of groups are presently working
on extensions of SQL to make it useful for spatial data bases
(Egenhofer and Frank, 1987b). Spatial applications need facili­
ties to retrieve data based on spatial relations, and the query
language must be extended to include these. Specifications for
the graphical rendering of the data must, for example, be in­
cluded in the query (Frank, 1982b; Egenhofer and Frank, 1988b).

EXPERIENCE AND FUTURE WORK

During the last seven years, we have built an experimental
DBMS suitable for use in a GIS. It is based on an extended net­
work data model and uses the FIELD TREE organization for fast
spatial access. PANDA consists of about 20,000 lines of highly
modular Pascal code and has been installed on IBM (under vM/
eMS) and Digital Equipment Corp. (under VMS and TOPS-lO)

www.manaraa.com

REQUIREMENTS FOR A DATABASE MANAGEMENT SYSTEM FOR A GIS 1563

computers. A commercial company is currently revising PANDA
to build a complete GIS. We have used PANDA to implement
methods to represent spatial data using cell complexes (Frank
and Kuhn, 1986). In order to test this method, some simplified
map data were loaded and maps drawn on the CRT. We found
that a powerful object-oriented programming language would
allow us to write generally applicable programs which can be
integrated to form specific applications later. This would sim­
plify the building of applications. We are currently changing
the programs interface of PANDA to become completely object­
oriented. We found this to be a necessary step to allow use of
object-oriented software engineering methods to build GIS from
basic building blocks. We also work on a query language for
GIS. It is not clear if extensions to SQL are sufficient or if a more
object centered design would result in a language easier to use
for GIS applications.

There is need for research to deal with "long transactions."
We plan to add support to PANDA to be able to maintain mul­
tiple versions of the same object (e.g., lot or public utility line)
at the same time where each long transaction is related to a
specific version. It will be necessary to build tools to simplify
the merging of different versions when they are confirmed. This
closely related to the necessity to deal with events and other
time related data in many types of GIS applications. For exam­
ple, for planning purposes not only the current land use but
also previous uses are important and often there are consider­
able interest in the rate of change as well. Preliminary studies
make us believe that the incorporation of temporal data will not
be an easy change but affect at least storage and retrieval meth­
ods, transaction management, and the user interface. The query
language will need temporal extensions, too.

CONCLUSIONS

We conclude with a number of recommendations:

• Spatial data collections including GIS should be built using the
database management system concept. This concept is crucial for
an interactive information system which can serve multiple users
and multiple requirements.

• Spatial data collections pose some special requirements, which
render the commercially available database management systems
unsuitable. They generally lack the special provision to achieve
physical clustering necessary for fast access to spatial data, and
they are optimized for data with quite different characteristics.
Their performance is generally observed to be insufficient for GIS
applications.

• Spatial database management systems must include many of the
standard features found in commercial systems, especially data
protection and transaction management to preserve loss of data
due to malfunctioning hardware and to permit concurrent users.

We recommend a layered architecture of the spatial database
management system, with a database kernel providing gener­
ally required services, and additional modules to adapt the da­
tabase management system to the special needs of spatial
applications (Haerder, 1986).

REFERENCES

Astrahan, M. M., D. D. Chamberlin, et aI., 1976. Sequel 2: A Unified
Approach to Data Definitions, Manipulations and Control, IBM
Journal Research and Development, Vol. 20, p. 560.

Burton, W., 1978. Efficient Retrieval of Geographical Information on
the Basis of Location. First International Advanced Study Symposium
on Topological Data Structures for Geographic Information Systems (G.
Dutton (Ed)), Harvard Papers on Geographic Information Systems,
Harvard University, Cambridge, Massachusetts.

CODASYL, 1962. An Information Algebra, Phase I Report, Commun.
ACM, Vol. 5, p. 190-204.

--,1971. Data Base Task Group (DBTG) Report, 1971.

Codd, E. F., 1982. Relational Database: A Practical Foundation for Pro­
ductivity, Commun. ACM, Vol. 25, p. 109.

Dangermond, J., and S. Morehouse, 1987. Trend in Hardware for Geo­
graphic Information Systems, Proceedings Eighth International Sym­
posium on Computer-Assisted Cartography (N. Chrisman (Ed.)),
Baltimore.

Denning, D. E., and U. Schloerer, 1980. A Fast Procedure for Finding
A Tracker in a Statistical Database, ACM Transactions on Database
Systems, Vol. 5.

Dutton, G., 1978. Navigating ODYSSEY, First International Advanced Study
Symposium on Topological Data Structures for Geographic Information
Systems (G. Dutton (Ed)), Harvard Papers on Geographic Infor­
mation Systems, Harvard University, Cambridge, Massachusetts.

Egenhofer, M., and A. Frank, 1987a. PANDA: An Object-Oriented Da­
tabase Based on User-Defined Abstract Data Types, Report No. 62, Sur­
veying Engineering, University of Maine, Orono, Maine.

---, 1987b. An Extended SQL Syntax to Treat Spatial Objects. Pro­
ceedings of the Second International Seminar on Trends and Concerns of
Spatial Sciences, Fredericton, New Brunswick.

---, 1988a. "Project Oriented Modeling a Powerful Tool for GIS",
submitted for publication.

--, 1988b. Towards a Spatial Query Language: User Interface Con­
siderations. 14th International Conference on Very Large Data Bases,
Los Angeles, California.

Frank, A., 1981. Applications of DBMS to Land Information Systems,
Proceedings VII International Conference on Very Large Data Bases, Cannes
(France), p. 448.

---, 1982a. PANDA: Pascal Network Database Management System (in
German), Report 62. Institute for Geodesy and Photogrammetry,
Swiss Federal Institute of Technology, Zurich, Switzerland.

---, 1982b. MAPQUERY: Data Base Query Language for Retrieval
of Geometric Data and Their Graphical Representation, SIGGRAPH
'82 Conference Proceedings, Computer Graphics, Vol. 16, p. 199.

--, 1983. "Storage Methods for Space Related Data: The FIELD
TREE", Spatial Algorithms for Processing Land Data with a Microcom­
puter (M. Barr (Ed.)), Boston, Lincoln Institute of Land Policy.

---, 1984a. Computer Assisted Cartography: Graphics or Geometry?
Journal of Surveying Engineering, Vol. 110, No.2, pp. 159-168.

---, 1984b. Extending a Network Database with Prolog, Expert Da­
tabase Systems, Proceedings of the First International Workshop on Expert
Database Systems, Kiawah Island, South Carolina.

---, 1986a. PANDA: An Object Oriented Pascal Network Database Man­
agement System, Report 57, Surveying Engineering, University of
Maine, Orono, Maine.

Frank, A., and W. Kuhn, 1986. Cell Graphs: A Provable Correct Method
for the Storage of Geometry, Proceedings Second International Sym­
posium on Spatial Data Handling, Seattle, Washington.

Frank, A., and M. Tamminen, 1982. Management of Spatially Refer­
enced Data, Proceedings International Symposium Land Information at
the Local Level, (A. Leick (Ed.)), University of Maine, Orono, Maine,
p.330.

Guttman, A., 1984. New Features for a Relational Database System to Sup­
port Computer Aided Design, Memorandum No. UCB/ERL M84/52,
Electronic Research Laboratory, College of Engineering, University
of California, Berkeley.

Haerder, Th., 1986. New Approaches to Object Processing in Engi­
neering Database, Proceedings 1986 International Workshop on Object­
Oriented Database Systems, Pacific Grove, California.

Haerder, Th., and A. Reuter, 1982. Database Systems for Non-Standard
Applications, Report 54/82, Fachbereich Informatik, Universitaet
Kaiserslautern, (FRG).

---, 1985. Architecture of Database Systems for Non-Standard Ap­
plications (in German). Database Systems in Office, Engineering, and
Scientific Environment, (A. Blaser and P. Pistor, eds.), Springer Verlag,
New York.

Manola, F., J. Orenstein, and U. Dayal, 1987. Geographic Information
Processing in the Probe Database System, Proceedings Eighth Inter­
national Symposium on Computer-Assisted Cartography, Baltimore.

National Academy of Science, 1980. Need for a multipurpose Cadastre by

www.manaraa.com

1564 PHOTOGRAMMETRIC E GINEERING & REMOTE SENSING, 1988

Panel on a MUltipurpose Cadastre Committee on Geodesy. Na­
tional Academy Press, Washington, D.C.

Nievergelt, J., et aI., 1984. The Grid File: An Adaptable Symmetric Mul­
tikey File Structure, ACM Transactions on Database Systems, Vol. 9.

Plouffe, W., et ai, 1984. A Database System for Engineering Design, A
Quarterly Bulletin of the IEEE COll1puter Society Technnical COll1mittee
on Database Engineering, Vol. 7, No.2.

Salton, G., and A. Wong, 1978. Generation and Search of Clustered
Files, ACM Transactions on Database Systems, Vol. 3.

Samet, H., 1984. The Quadtree and Related Hierarchical Data Struc­
tures, ACM Computing Surveys, Vol. 16, No.2.

Schek, H.J., and V. Lum, 1983. Complex Data Objects: Text, Voice,
Images: Can DBMS Manage them? Proceedings 9th International Con­
ference on Very Large Databases, Florence (Italy).

Tamminen, M., 1982. Efficient Spatial Access to a Database, Proceedings
SIGMOD Conference.

NEED MAPPING PHOTOGRAPHY
IN THE SOUTHWEST?
~~
((I(r ~ CALL~ AERO/SCIENCE

P.o. BOX 4 SCOTTSDALE, AZ 85252
(602) 948-6634

• WILD-ZEISS CAMERAS
• NATURAL COLOR
• COLOR INFRARED
.28,000' CAPABILITY
• RELATED LABWORK

THE PHOTOGRAMMETRIC SOCIETY, LONDON

Membership of the Society entitles you to The Photogrammetric Record which is published twice yearly and is an interna­
tionally respected journal of great value to the practicing photogrammetrist. The Photogrammetric Society now offers a
simplified form of membership to those who are already members of the American Society.

(Due on application
and thereafter on

July 1 of each year.)

To: The Hon. Secretary,
The Photogrammetric Society,
Dept. of Photogrammetry & Surveying
University College London
Gower Street
London WClE 6BT, England

APPLICATION FORM

PLEASE USE BLOCK LETTERS

I apply for membership of the Photogrammetric Society as,
o Member - Annual Subscription - $30.00
o Junior (under 25) Member - Annual Subscription - $15.00
o Corporate Member - Annual Subscription - $180.00

(The first subscription of members elected after the 1st of January in any year is reduced by half.)

I confirm my wish to further the objects and interests of the Society and to abide by the Constitution and By-Laws. I enclose
my subscription.

Surname, First Names
Age next birthday (if under 25)
Profession or Occupation
Educational Status
Present Employment
Address

ASP Membership
Card No .

Date .
Signature of
Applicant .

Applications for Corporate Membership, which is open to Universities, Manufacturers and Operating Companies, should be
made by separate letter giving brief information of the Organization's interest in photogrammetry.

